

Autonomy and AI

Dinesh Manocha
University of Maryland at College Park

dm@cs.umd.edu

AI: Recent Developments

- Driven by advances in machine learning
 - Deep learning; Big data; Commodity hardware (e.g GPUs, Al processors)
- Strong impact in image recognition, speech understanding, automated translation
- Rapid expansion in other fields
 - Natural sciences, social sciences, engineering, medicine
- Strong investments in industry
 - Google, Facebook, Microsoft, Apple, Samsung, Intel, Adobe
- International expansion (Canada, Europe, China)
- Strong educational demand: undergraduate and graduate

- Integral part of "Computing at UMD" since 1960s
- Strong research groups in computer vision, natural language processing, planning an game theory
- Recent growth in machine learning, robotics, data science
- Strong interest all over the campus
 - STEM fields (natural sciences, engineering)
 - Non-STEM fields (social sciences, humanities, business)

- Computer vision
- Neuro and swarm computing
- Robotics
- Machine learning
- Natural language processing

- Computer vision
- Neuro and swarm computing
- Robotics
- Machine learning
- Natural language processing

- Founded by Azriel Rosenfeld in 1965.
- By quantitative measures (csrankings.org) #2 group in US, 1998-2018.
- Five computer vision faculty (Aloimonos, Chellappa, Davis, Jacobs, Shrivistava)
- Plus several research faculty (Castillo, Chen, Fermuller, Yacoob),
- Other related faculty (eg., Daume, Duraiswami, Goldstein, Samet, Zwicker),
- ~60 grad students

High Impact Research

- Rosenfeld led foundational work in many early areas of CV, including Relaxation Labeling (3000+ cites).
- Active Vision (1600+ cites), seminal paper in key area of vision.
- Visual Invariants (series of papers launched this subfield of CV).
- Discriminant Analysis for Face Recognition (2000+ cites); remain world leaders in FR.
 - Invention of the year (2 times); work led to FR startup.
- Non-parametric background subtraction (series of 4 papers with 7500+ citations).
- Leafsnap (First app to use CV for species ID, 1.5m downloads, extensive media coverage).
- 10s of millions in funding.

- Computer vision
- Neuro and swarm computing
- Robotics
- Machine learning
- Natural language processing

Swarm Intelligence

Example:
self-assembly
of components
into complex
structures
(bridge here)

Grushin A, et al., *ACM Trans. Autonomous and Adaptive Systems*, 5, 2010.

Large-Scale Neurocognitive Architectures

imitation learning

Oh H, et al.. Human Movement Science, 2018, in press.

cognitive control

Sylvester J, et al.. Neural Networks, 79, 2016, 37-52.

- Computer vision
- Neuro and swarm computing
- Robotics
- Machine learning
- Natural language processing

Maryland Robotics Center: Overview

- Housed in the Institute for Systems Research
- Consists of twenty-one labs
- Consists of 40 participating faculty members from eight academic departments
- Current activities cover most facets of robotics
- Educational programs including M. Eng in Robotics

Center Research Expertise

18 SARYLAS

- Bio-Inspired Robotics
- Cognitive Robotics
- Cooperative, Collaborative, Networked Robotics
- Unmanned Vehicles
- Miniature Robots
- Medical Robotics
- Robotics in Extreme Environments
- Social Robotics

Center research projects are supported by the major federal funding agencies including NSF, ARO, ARL, ONR, AFOSR, NIH, DARPA, NASA, and NIST.

- Computer vision
- Neuro and swarm computing
- Robotics
- Machine learning
- Natural language processing

Machine Learning

Research Areas

Distributed ML for big data in the cloud

Understanding Neural Nets

- Optimization
- Distributed computing
- Computer vision
- Circuit design

Adversarial Learning "cat" "traffic light"

Human-Robot Planning

Real Robot Demo

7-DOF Fetch robot arm

Dynamic motion planning with/without human motion prediction

Natural Language Human-Robot Communication

Robots and Crowds: Realtime Navigation

Automatic navigation
General environments
No precomputation
Simple Lidar sensor

Current AD technology vs. Real-world Scenarios

 Many traffic situations are still too challenging for autonomous vehicles

Current Autonomous Driving

Urban Traffic Condition

Autonovi-Sim

- Modular simulation framework for generating dynamic traffic conditions, weather, driver profiles, and road networks
- Facilitates novel driving strategy development
- On top of UnReal Engine

Autonovi-Sim: Drivers

- 3 Drivers in AutonoVi-Sim
 - Manual
 - Basic Follower
 - AutonoVi

RealTime Traffic Tracking

Car: Green

Rickshaws: Purple

Pedestrians & Two-Wheelers: Red

Buses: Cyan

Animals: Yellow

Predicting trajectory of different road-agents; cars, bicycles, pedestrians